

SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Engine Systems

DOE Contract: DE-EE0003303

NETL Project Officer: Ralph Nine

DOE Project Manager: Roland Gravel

Navistar Principal Investigator: Russ Zukouski

DOE MERIT REVIEW

06/09/2016

Project ID: ACE059

Program Overview

Timeline		Partners		
Project End: S	October 2010 Sept 2016 91%	Navistar	Principal Investigator, Vehicle Systems Integrator Controls Systems, Engine & Vehicle Testing	
% Complete: 9		Bosch	Fuel Systems	
		Wabash	Trailer Technologies	
		ANL	Dual Fuel Engine testing, simulation a evaluation	
		LLNL	Aerodynamic CFD	
Barriers		Budget		
 Achieving 50% freight efficiency while balancing Voice of Customer Needs 		Total Fund	ding: \$76,178,386	
		DOE:	\$35,754,460	
 Alignment with business needs 		Prime:	\$40,423,926	
 Reducing tractor weight while adding new 		Funding F	FY2015 \$8,965,646	
systems		Funding fo	for FY2016 \$4,896,000	

Objectives and Relevance

Goals and Objectives

- Demonstrate 50% improvement in freight efficiency
 20% through Engine technologies
 30% through Vehicle technologies
- 2. Demonstrate 50% BTE on Engine Dynamometer
- Demonstrate technical pathway towards 55% BTE

Relevance

- ✓ Provide a realistic technology demonstrator to reduce petroleum consumption in the truck market:
 - → Engine technologies closely worked with business requirements
 - → Focus on packaging and customer interface (key in the case of Waste Heat Recovery)
- ✓ Work with Partners to develop robust products for commercial integration:
 - → High efficiency common rail Fuel Injection System (FIS) (BOSCH) for advanced combustion
 - → Advanced base engine technologies for friction reduction
 - → Worked with Argonne National Labs to provide technical path for alternative fuels and clean combustion systems
- ✓ Work with Collaborators...

Timing / Milestones

Vehicle Partnerships and Completed tasks

	12-Apr	12-Oct	14-Apr	15-APR 16-APR	16-Sep
	Phase I		Phase II	Phase III	Phase IIII - V
Navistar	Vehicle systems integrator Control Systems Base Engine		Concept technologies chosen 48.3% BTE achieved Load biasing evaluated Material procured for Mule build Engine Design Controls deployment	T3 Vehicle achieved 70% FE 48.9% BTE achieved Load biasing concluded in final build Material procured for Mule build Engine Design Controls deployment	50% + FE
Wabash Natio	Onal Trailer Technologies	P A	Trailer Design	Trailer and system built	50% + FE
BOSCH	Fuel Systems	U S E	Adv comb with FIS strategies	Adv comb with FIS optimization complete WHR system developed	50+ BTE Path 55% BTE
LLNL	Computational Fluid Dynamics		Computational Fluid Dynamics	Speed form complete wind tunnel testing Final body shape in procurement	50% + FE
ANL	Engine Design Controls deployment Fuel Reactivity testing		VVA 1D/3D simulations Reduction of Parasitic Fuel Reactivity testing	VVA evaluated 1D/3D simulations Reduction of Parasitic demonstrated Fuel Reactivity testing in final stage	50+ BTE Path 55% BTE

Engine Collaborators & Completed Tasks

2-Oct	14-Apr	15-Apr 16-Apr	16-Sep
	Phase II	Phase III	Phase III-IV
P A U S E	Mahle ✓ Adv. Power Cyl. Concepts ✓ Heat Exchangers	✓ Pwr cyl optimization ✓ WHR system and components re-defined by simulation	55% BTE Demo
	Borg Warner ✓ Turbos / Air Systems	✓ Optimized turbocharger system	50% BTE Demo
	Jacobs Vehicle Systems ✓ Variable Valve Actuation	✓ Pumping work reduction for specific operating modes	55% BTE Path
	Philos Technology ✓ Surface Treatment Evaluation		55% BTE Path
	Federal Mogul ✓ Accessory prove out ✓ Kit procurement	✓ Friction Engine Testing	55% BTE Path
	C.E.S.	✓ High Efficiency Aftertreatment	50% BTE Demo
	Adiabatics, Inc.	✓ Advanced Thermal Mgmt.✓ Thermal Barrier Coating	55% BTE Path

Barriers and Technology Roadmap

Keys: ✓ high confidence to contain

★ working on improving solution

System	Barriers (challenges)	Technology Roadmap	
Engine & Vehicle	 Cost effective Robust (controls, durable) Reduced weight 	Rely on analysis to select technology	✓
Engine	 High combustion efficiency High efficiency A/T System Air system with minimum losses 	Improve FIS and combustion match Advanced combustion regimes Improve gas exchange efficiency Advanced aftertreatment	✓ ✓ ✓
Engine	Modest bottoming cycle efficiencyParasitic reductionWHR system	Advanced designs Close collaboration with suppliers for new technologies Optimum integration to engine	✓ ✓ ✓
Engine	Non optimum fuel formulationOptimal dual fuel reactivity	Introduce reactivity control Understanding of chemical kinetics	*

Approach – Technology Selection

2. Air System

- VG turbo with improved Efficiency
- High flow cylinder head

3. Friction-Accessories

- VWP
- Power Cylinder Components
- Reduction of pumping loss

5. WHR

ORC system

1. Combustion

Cooling modules

Two Stage

- New combustion chamber
- Bowl-optimization
- Increased PCP
- Thermal management

4. Aftertreatment

- DOC/DPF + SCR
- Close coupled
- Hi efficiency
- Low DP

Optimize Integration Criteria

- Efficiency gain (BTE)
- Weight (Ton-mile/gallon)

Accomplishments – Engine Dyno 49.6% BTE

Accomplishments – Air System / VVA / RSD

➤ High Efficiency Turbocharger

Successful implementation of turbo system technology to test engine

> VVA installation on the test engine at ANL:

- ➤ RSD (Rocker Stop Device)
 - A/T thermal management
 - Stop/Go operation

Accomplishments – Advanced Combustion

- Compression ratio (CR),
- Combustion chamber and matching fuel injection strategies,
- Combustion phasing

Good air utilization will improve the 2nd half of diesel combustion, MBF50-90%, faster diffusion combustion.

Accomplishments – Reduction of Parasitic Losses

Power Cylinder

Cooling System

Lube + Cooling

Accomplishments – Evaluation of WHR Strategy

✓ eTurbo evaluation

Prototype system in test cell.

Accomplishments – 55% BTE Pathway

Dual-fuel evaluation

Diesel-CNG best points 48.1% at 20 bar 47.4% at 14 bar

Diesel only baseline 46.5% % at 14 bar

In-cylinder heat transfer modeling

Conjugate Heat Transfer (CHT)

Future Work - Moving Forward

Wrap-up Work

- ✓ ORC system optimization
- ✓ Aftertreatment thermal management
- ✓ Control Strategy optimization
- ✓ System Integration/packaging
- ✓ High efficiency air system optimization
- ✓ In cylinder thermal management
- ✓ Reactivity studies performed with gasoline and alcohol fuel

Technologies/methods utilized to achieve 50% BTE

✓ On engine combustion:

- Newly designed combustion chambers and system match
- Investigation and understanding combustion phasing
- Extended peak cylinder pressure capability

✓ Engine Downsped

Re-cal and optimization

✓ Reduction of Parasitic Losses

- Base components, lube and cooling, were updated raising BTE
- Power cylinder components were procured and evaluated

✓ WHR system

- Simulation to define ORC system components
- Prototype system was assembled for testing and evaluation.

Advanced 55% BTE technical path

- ✓ Reactivity studies performed with gasoline and alcohol fuels.
 - High engine efficiencies were compatible with very reduced engine emissions
 - Study will continue with enabling features recently added VVA system, such as high compression ratio, new combustion system
- ✓ Both 1D and 3D simulations are used for technical feasibility study